Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 4(7): 836-847, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879462

RESUMO

The overconsumption of highly caloric and palatable foods has caused a surge in obesity rates in the past half century, thereby posing a healthcare challenge due to the array of comorbidities linked to heightened body fat accrual. Developing treatments to manage body weight requires a grasp of the neurobiological basis of appetite. In this Review, we discuss advances in neuroscience that have identified brain regions and neural circuits that coordinate distinct phases of eating: food procurement, food consumption, and meal termination. While pioneering work identified several hypothalamic nuclei to be involved in feeding, more recent studies have explored how neuronal populations beyond the hypothalamus, such as the mesolimbic pathway and nodes in the hindbrain, interconnect to modulate appetite. We also examine how long-term exposure to a calorically dense diet rewires feeding circuits and alters the response of motivational systems to food. Understanding how the nervous system regulates eating behaviour will bolster the development of medical strategies that will help individuals to maintain a healthy body weight.


Assuntos
Apetite , Comportamento Alimentar , Apetite/fisiologia , Peso Corporal , Dieta , Comportamento Alimentar/fisiologia , Humanos , Obesidade
2.
iScience ; 25(3): 103868, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243231

RESUMO

Behavior is context-dependent and often modulated by an animal's internal state. In particular, different social contexts can alter anxiety levels and modulate social behavior. The vertebrate-specific neuropeptide parathyroid hormone 2 (pth2) is regulated by the presence of conspecifics in zebrafish. As its cognate receptor, the parathyroid hormone 2 receptor (pth2r), is widely expressed across the brain, we tested fish lacking the functional Pth2 peptide in several anxiety-related and social behavior paradigms. Here, we show that the propensity to react to sudden stimuli with an escape response was increased in pth2 -/- zebrafish, consistent with an elevated anxiety level. While overall social preference for conspecifics was maintained in pth2 -/- fish until the early juvenile stage, we found that both social preference and shoaling were altered later in development. The data presented suggest that the neuropeptide Pth2 modulates several conserved behaviors and may thus enable the animal to react appropriately in different social contexts.

3.
Nature ; 588(7839): 653-657, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268890

RESUMO

Species that depend on membership in social groups for survival exhibit changes in neuronal gene expression and behaviour when they face restricted social interactions or isolation1-3. Here we show that, across the lifespan of zebrafish (Danio rerio), social isolation specifically decreased the level of transcription of pth2, the gene that encodes the vertebrate-specific neuropeptide Pth2. However, 30 minutes of exposure to conspecifics was sufficient to initiate a significant rescue of pth2 transcript levels in previously isolated zebrafish. Transcription of pth2 exhibited bidirectional dynamics; following the acute isolation of socially reared fish, a rapid reduction in the levels of pth2 was observed. The expression of pth2 tracked not only the presence of other fish but also the density of the group. The sensory modality that controls the expression of pth2 was neither visual nor chemosensory in origin but instead was mechanical, induced by the movements of neighbouring fish. Chemical ablation of the mechanosensitive neuromast cells within the lateral line of fish prevented the rescue of pth2 levels that was induced by the social environment. In addition, mechanical perturbation of the water at frequencies similar to the movements of the zebrafish tail was sufficient to rescue the levels of pth2 in previously isolated fish. These data indicate a previously underappreciated role for the relatively unexplored neuropeptide Pth2 in both tracking and responding to the population density of the social environment of an animal.


Assuntos
Mecanotransdução Celular , Hormônio Paratireóideo/metabolismo , Peixe-Zebra/metabolismo , Animais , Feminino , Masculino , Hormônio Paratireóideo/genética , Isolamento Social , Transcrição Gênica , Peixe-Zebra/genética
4.
PLoS One ; 11(12): e0167963, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936181

RESUMO

The NIH Undiagnosed Diseases Program admitted a male patient with unclassifiable late-onset ataxia-like symptoms. Exome sequencing revealed a heterozygous de novo mutation converting glycine 316 to serine in ATP1A3, which might cause disease. ATP1A3 encodes the Na+/K+ ATPase pump α3-subunit. Using CRISPR/Cas9-mediated homologous recombination for genome editing, we modelled this putative disease-causing allele in Caenorhabditis elegans, recreating the patient amino acid change in eat-6, the orthologue of ATP1A3. The impact of the mutation on eat-6 function at the neuromuscular junction was examined using two behavioural assays: rate of pharyngeal pumping and sensitivity to aldicarb, a drug that causes paralysis over time via the inhibition of acetylcholinesterase. The patient allele decreased pumping rates and caused hypersensitivity to aldicarb. Animals heterozygous for the allele exhibited similar defects, whereas loss of function mutations in eat-6 were recessive. These results indicate that the mutation is dominant and impairs the neuromuscular function. Thus, we conclude that the de novo G316S mutation in ATP1A3 likely causes or contributes to patient symptoms. More broadly, we conclude that, for conserved genes, it is possible to rapidly and easily model human diseases in C. elegans using CRIPSR/Cas9 genome editing.


Assuntos
Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes Dominantes , Recombinação Homóloga , ATPase Trocadora de Sódio-Potássio/genética , Alelos , Animais , Heterozigoto , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...